Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557080

RESUMO

Modern semiconductor fabrication is challenged by difficulties in overcoming physical and chemical constraints. A major challenge is the wet etching of dummy gate silicon, which involves the removal of materials inside confined spaces of a few nanometers. These chemical processes are significantly different in the nanoscale and bulk. Previously, electrical double-layer formation, bubble entrapment, poor wettability, and insoluble intermediate precipitation have been proposed. However, the exact suppression mechanisms remain unclear due to the lack of direct observation methods. Herein, we investigate limiting factors for the etching kinetics of silicon with tetramethylammonium hydroxide at the nanoscale by using liquid-phase transmission electron microscopy, three-dimensional electron tomography, and first-principles calculations. We reveal suppressed chemical reactions, unstripping phenomena, and stochastic etching behaviors that have never been observed on a macroscopic scale. We expect that solutions can be suggested from this comprehensive insight into the scale-dependent limiting factors of fabrication.

2.
Sci Adv ; 10(3): eadj6417, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232154

RESUMO

Utilization of in situ/operando methods with broad beams and localized probes has accelerated our understanding of fluid-surface interactions in recent decades. The closed-cell microchips based on silicon nitride (SiNx) are widely used as "nanoscale reactors" inside the high-vacuum electron microscopes. However, the field has been stalled by the high background scattering from encapsulation (typically ~100 nanometers) that severely limits the figures of merit for in situ performance. This adverse effect is particularly notorious for gas cell as the sealing membranes dominate the overall scattering, thereby blurring any meaningful signals and limiting the resolution. Herein, we show that by adopting the back-supporting strategy, encapsulating membrane can be reduced substantially, down to ~10 nanometers while maintaining structural resiliency. The systematic gas cell work demonstrates advantages in figures of merit for hitherto the highest spatial resolution and spectral visibility. Furthermore, this strategy can be broadly adopted into other types of microchips, thus having broader impact beyond the in situ/operando fields.

3.
Adv Mater ; 36(6): e2309936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016113

RESUMO

Single-molecule techniques are powerful microscopy methods that provide new insights into biological processes. Liquid-phase transmission electron microscopy (LP-TEM) is an ideal single-molecule technique for overcoming the poor spatiotemporal resolution of optical approaches. However, single-molecule LP-TEM is limited by several challenges such as electron-beam-induced molecular damage, difficulty in identifying biomolecular species, and a lack of analytical approaches for conformational dynamics. Herein, a single-molecule graphene liquid-cell TEM (GLC-TEM) technique that enables the investigation of real-time structural perturbations of intact amyloid fibrils is presented. It is demonstrated that graphene membranes significantly extend the observation period of native amyloid beta proteins without causing oxidative damage owing to electron beams, which is necessary for imaging. Stochastic and time-resolved investigations of single fibrils reveal that structural perturbations in the early fibrillar stage are responsible for the formation of various amyloid polymorphs. The advantage of observing structural behavior in real time with unprecedented resolution will potentially make GLC-TEM a complementary approach to other single-molecule techniques.


Assuntos
Grafite , Grafite/química , Amiloide/química , Elétrons , Peptídeos beta-Amiloides , Microscopia Eletrônica de Transmissão
4.
ACS Nano ; 18(1): 819-828, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153349

RESUMO

As semiconductor scaling continues to reach sub-nanometer levels, two-dimensional (2D) semiconductors are emerging as a promising candidate for the post-silicon material. Among these alternatives, Bi2O2Se has risen as an exceptionally promising 2D semiconductor thanks to its excellent electrical properties, attributed to its appropriate bandgap and small effective mass. However, unlike other 2D materials, growth of large-scale Bi2O2Se films with precise layer control is still challenging due to its large surface energy caused by relatively strong interlayer electrostatic interactions. Here, we present the successful growth of a wafer-scale (∼3 cm) Bi2O2Se film with precise thickness control down to the monolayer level on TiO2-terminated SrTiO3 using metal-organic chemical vapor deposition (MOCVD). Scanning transmission electron microscopy (STEM) analysis confirmed the formation of a [BiTiO4]1- interfacial structure, and density functional theory (DFT) calculations revealed that the formation of [BiTiO4]1- significantly reduced the interfacial energy between Bi2O2Se and SrTiO3, thereby promoting 2D growth. Additionally, spectral responsivity measurements of two-terminal devices confirmed a bandgap increase of up to 1.9 eV in monolayer Bi2O2Se, which is consistent with our DFT calculations. Finally, we demonstrated high-performance Bi2O2Se field-effect transistor (FET) arrays, exhibiting an excellent average electron mobility of 56.29 cm2/(V·s). This process is anticipated to enable wafer-scale applications of 2D Bi2O2Se and facilitate exploration of intriguing physical phenomena in confined 2D systems.

5.
Nano Lett ; 23(21): 9733-9739, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37903092

RESUMO

We report the synthesis of ethylenediamine-intercalated NbSe2 and Li-ethylenediamine-intercalated MoSe2 single crystals with increased interlayer distances and their electronic structures measured by means of angle-resolved photoemission spectroscopy (ARPES). X-ray diffraction patterns and transmission electron microscopy images confirm the successful intercalation and an increase in the interlayer distance. ARPES measurement reveals that intercalated NbSe2 shows an electronic structure almost identical to that of monolayer NbSe2. Intercalated MoSe2 also returns the characteristic feature of the monolayer electronic structure, a direct band gap, which generates sizable photoluminescence even in the bulk form. Our results demonstrate that the properties and phenomena of the monolayer transition metal dichalcogenides can be achieved with large-scale bulk samples by blocking the interlayer interaction through intercalation.

6.
Nanoscale ; 15(4): 1794-1805, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36602000

RESUMO

The design of nanostructured materials for efficient bifunctional electrocatalysts has gained tremendous attention, yet developing a fast and effective synthesis strategy remains a challenge. Here, we present a fast and scalable synthetic method of Ni/Co/Co3O4@C nanorods for efficient overall water splitting. Using microwave synthesis, we first produced a unique Ni-MOF@Co-MOF in a few minutes. Subsequently, we transformed the MOF@MOF into hybrid Ni/Co/Co3O4 nanoparticles covered with graphitic carbon in a few seconds using laser-scribing. The prepared bimetallic catalysts showed remarkably low overpotentials of 246 mV for the oxygen evolution reaction (OER) and 143 mV for the hydrogen evolution reaction (HER) at a current density of 30 mA cm-2. An electrolyzer assembled with the bimetallic catalysts delivered a high current density of 20 mA cm-2 at a voltage of 1.6 V and exhibited good durability (nearly 91.6% retention even after a long-running operation of 24 h at a voltage of 1.52 V). Our proposed method could serve as a powerful method for creating various multimetallic hybrid nanocatalysts with unique hierarchical structures from diverse MOFs.

7.
Science ; 378(6620): 637-641, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356149

RESUMO

An elastic printed circuit board (E-PCB) is a conductive framework used for the facile assembly of system-level stretchable electronics. E-PCBs require elastic conductors that have high conductivity, high stretchability, tough adhesion to various components, and imperceptible resistance changes even under large strain. We present a liquid metal particle network (LMPNet) assembled by applying an acoustic field to a solid-state insulating liquid metal particle composite as the elastic conductor. The LMPNet conductor satisfies all the aforementioned requirements and enables the fabrication of a multilayered high-density E-PCB, in which numerous electronic components are intimately integrated to create highly stretchable skin electronics. Furthermore, we could generate the LMPNet in various polymer matrices, including hydrogels, self-healing elastomers, and photoresists, thus showing their potential for use in soft electronics.

8.
Pharmaceutics ; 14(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214189

RESUMO

Plant-derived extracellular vesicles (EVs) are capable of efficiency delivering mRNAs, miRNAs, bioactive lipids, and proteins to mammalian cells. Plant-derived EVs critically contribute to the ability of plants to defend against pathogen attacks at the plant cell surface. They also represent a novel candidate natural substance that shows potential to be developed for food, cosmetic, and pharmaceutical products. However, although plant-derived EVs are acknowledged as having potential for various industrial applications, little is known about how their stability is affected by storage conditions. In this study, we evaluated the stability of Dendropanax morbifera leaf-derived extracellular vesicles (LEVs) alone or combined with the preservatives, 1,3-butylene glycol (to yield LEVs-1,3-BG) or TMO (LEVs-TMO). We stored these formulations at -20, 4, 25, and 45 °C for up to 4 weeks, and compared the stability of fresh and stored LEVs. We also assessed the effect of freeze-thawing cycles on the quantity and morphology of the LEVs. We found that different storage temperatures and number of freeze-thawing cycles altered the stability, size distribution, protein content, surface charge, and cellular uptake of LEVs compared to those of freshly isolated LEVs. LEVs-TMO showed higher stability when stored at 4 °C, compared to LEVs and LEVs-1,3-BG. Our study provides comprehensive information on how storage conditions affect LEVs and suggests that the potential industrial applications of plant-derived EVs may be broadened by the use of preservatives.

9.
Nat Commun ; 12(1): 7111, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876578

RESUMO

Spin-orbit coupling effect in structures with broken inversion symmetry, known as the Rashba effect, facilitates spin-orbit torques (SOTs) in heavy metal/ferromagnet/oxide structures, along with the spin Hall effect. Electric-field control of the Rashba effect is established for semiconductor interfaces, but it is challenging in structures involving metals owing to the screening effect. Here, we report that the Rashba effect in Pt/Co/AlOx structures is laterally modulated by electric voltages, generating out-of-plane SOTs. This enables field-free switching of the perpendicular magnetization and electrical control of the switching polarity. Changing the gate oxide reverses the sign of out-of-plane SOT while maintaining the same sign of voltage-controlled magnetic anisotropy, which confirms the Rashba effect at the Co/oxide interface is a key ingredient of the electric-field modulation. The electrical control of SOT switching polarity in a reversible and non-volatile manner can be utilized for programmable logic operations in spintronic logic-in-memory devices.

10.
ACS Nano ; 15(11): 18113-18124, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34734700

RESUMO

Charge doping to Mott insulators is critical to realize high-temperature superconductivity, quantum spin liquid state, and Majorana fermion, which would contribute to quantum computation. Mott insulators also have a great potential for optoelectronic applications; however, they showed insufficient photoresponse in previous reports. To enhance the photoresponse of Mott insulators, charge doping is a promising strategy since it leads to effective modification of electronic structure near the Fermi level. Intercalation, which is the ion insertion into the van der Waals gap of layered materials, is an effective charge-doping method without defect generation. Herein, we showed significant enhancement of optoelectronic properties of a layered Mott insulator, α-RuCl3, through electron doping by organic cation intercalation. The electron-doping results in substantial electronic structure change, leading to the bandgap shrinkage from 1.2 eV to 0.7 eV. Due to localized excessive electrons in RuCl3, distinct density of states is generated in the valence band, leading to the optical absorption change rather than metallic transition even in substantial doping concentration. The stable near-infrared photodetector using electronic modulated RuCl3 showed 50 times higher photoresponsivity and 3 times faster response time compared to those of pristine RuCl3, which contributes to overcoming the disadvantage of a Mott insulator as a promising optoelectronic device and expanding the material libraries.

11.
ACS Nano ; 15(11): 17472-17479, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751557

RESUMO

Binary metal sulfides have been explored as sodium storage materials owing to their high theoretical capacity and high stable cyclability. Nevertheless, their relative high charge voltage and relatively low practical capacity make them less attractive as an anode material. To resolve the problem, addition of alloying elements is considerable. Copper antimony sulfide is investigated as a representative case. In this study, we do not only perform electrochemical characterization on CuSbS2, but also investigate its nonequilibrium sodiation pathway employing in-/ex situ transmission electron microscopy, in situ X-ray diffraction, and density functional theory calculations. Our finding provides valuable insights on sodium storage into ternary metal sulfide including an alloying element.

12.
APL Bioeng ; 5(1): 016103, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33688618

RESUMO

Size-based filtration techniques have been developed for high-throughput isolation of extracellular vesicles (EVs). Conventional direct filtration systems have limitations in that large particles generally not only block the pores of the membrane but also damage the particles because of the high fluid pressure. Here, we propose a cyclic tangential flow filtration (TFF) system that includes two membranes with pore sizes of 200 and 30 nm, connected to a peristaltic pump that feeds the stream flowing to the membrane for continuous circulation. The cyclic TFF system is better able to isolate the specific 30-200 nm size range in one step through dual cyclic filtration compared with direct filtration (DF) and single cyclic TFF (scTFF). We further introduced a buffer-exchange process to the dcTFF system after filtration to remove contaminants for more efficient purification. As a result of comparative evaluation of dcTFF and ExoQuick, EVs isolated by dcTFF had more abundant exosome markers and active EVs. The cyclic TFF system not only has great potential to separate EVs with high selectivity and separation efficiency in small volumes of samples but can also be used in clinical applications, including medical diagnostic procedures.

13.
Adv Mater ; 33(3): e2005255, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33617075

RESUMO

Organic-inorganic hybrid perovskite nanoparticles (NPs) are a very strong candidate emitter that can meet the high luminescence efficiency and high color standard of Rec.2020. However, the instability of perovskite NPs is the most critical unsolved problem that limits their practical application. Here, an extremely stable crosslinked perovskite NP (CPN) is reported that maintains high photoluminescence quantum yield for 1.5 years (>600 d) in air and in harsher liquid environments (e.g., in water, acid, or base solutions, and in various polar solvents), and for more than 100 d under 85 °C and 85% relative humidity without additional encapsulation. Unsaturated hydrocarbons in both the acid and base ligands of NPs are chemically crosslinked with a methacrylate-functionalized matrix, which prevents decomposition of the perovskite crystals. Counterintuitively, water vapor permeating through the crosslinked matrix chemically passivates surface defects in the NPs and reduces nonradiative recombination. Green-emitting and white-emitting flexible large-area displays are demonstrated, which are stable for >400 d in air and in water. The high stability of the CPN in water enables biocompatible cell proliferation which is usually impossible when toxic Pb elements are present. The stable materials design strategies provide a breakthrough toward commercialization of perovskite NPs in displays and bio-related applications.

14.
ACS Nano ; 15(3): 3971-3995, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33577296

RESUMO

Multiscale and multimodal imaging of material structures and properties provides solid ground on which materials theory and design can flourish. Recently, KAIST announced 10 flagship research fields, which include KAIST Materials Revolution: Materials and Molecular Modeling, Imaging, Informatics and Integration (M3I3). The M3I3 initiative aims to reduce the time for the discovery, design and development of materials based on elucidating multiscale processing-structure-property relationship and materials hierarchy, which are to be quantified and understood through a combination of machine learning and scientific insights. In this review, we begin by introducing recent progress on related initiatives around the globe, such as the Materials Genome Initiative (U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.), Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a focus on the multiscale structural hierarchy, as well as structure-property relationships. Additionally, data mining from the literature combined with machine learning will be shown to be more efficient in finding the future direction of materials structures with improved properties than the classical approach. Examples of materials for applications in energy and information will be reviewed and discussed. A case study on the development of a Ni-Co-Mn cathode materials illustrates M3I3's approach to creating libraries of multiscale structure-property-processing relationships. We end with a future outlook toward recent developments in the field of M3I3.

15.
J Control Release ; 331: 187-197, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33422501

RESUMO

Protein encapsulation into nanocarriers has been extensively studied to improve the efficacy and stability of therapeutic proteins. However, the chemical modification of proteins or new synthetic carrier materials are essential to achieve a high encapsulation efficiency and structural stability of proteins, which hinders their clinical applications. New strategies to physically incorporate proteins into nanocarriers feasible for clinical uses are required to overcome the current limitation. Here we report the spontaneous protein-induced reorganization of 'pre-formed' unilamellar lipid vesicles to efficiently incorporate proteins within multilamellar protein-lipid hybrid vesicles without chemical modification. Epidermal growth factor (EGF) binds to the surface of cationic unilamellar lipid vesicles and induces layer-by-layer self-assembly of the vesicles. The protein is spontaneously entrapped in the interstitial layers of a multilamellar structure with extremely high loading efficiency, ~99%, through polyionic interactions as predicted by molecular dynamics simulation. The loaded protein exhibits much higher structural, chemical, and biological stability compared to free protein. The method is also successfully applied to several other proteins. This work provides a promising method for the highly efficient encapsulation of therapeutic proteins into multilamellar lipid vesicles without the use of specialized instruments, high energy, coupling agents, or organic solvents.


Assuntos
Lipossomos , Lipossomas Unilamelares , Cátions , Lipídeos , Solventes
16.
ACS Nano ; 15(1): 288-308, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33395264

RESUMO

Graphene liquid cell electron microscopy (GLC-EM), a cutting-edge liquid-phase EM technique, has become a powerful tool to directly visualize wet biological samples and the microstructural dynamics of nanomaterials in liquids. GLC uses graphene sheets with a one carbon atom thickness as a viewing window and a liquid container. As a result, GLC facilitates atomic-scale observation while sustaining intact liquids inside an ultra-high-vacuum transmission electron microscopy chamber. Using GLC-EM, diverse scientific results have been recently reported in the material, colloidal, environmental, and life science fields. Here, the developments of GLC fabrications, such as first-generation veil-type cells, second-generation well-type cells, and third-generation liquid-flowing cells, are summarized. Moreover, recent GLC-EM studies on colloidal nanoparticles, battery electrodes, mineralization, and wet biological samples are also highlighted. Finally, the considerations and future opportunities associated with GLC-EM are discussed to offer broad understanding and insight on atomic-resolution imaging in liquid-state dynamics.


Assuntos
Grafite , Nanopartículas , Fontes de Energia Elétrica , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
17.
Adv Mater ; 33(2): e2005468, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33215775

RESUMO

The recent advances in liquid-phase transmission electron microscopy represent tremendous potential in many different fields and exciting new opportunities. However, achieving both high-resolution imaging and operando capabilities remain a significant challenge. This work suggests a novel in situ imaging platform of liquid-flowing graphene chip TEM (LFGC-TEM) equipped with graphene viewing windows and a liquid exchange system. The LFGCs are robust under high-pressure gradients and rapid liquid circulation in ranges covering the experimental conditions accessible with conventional thick SiNx chips. LFGC-TEM provides atomic resolution for colloidal nanoparticles and molecular-level information limits for unstained wet biomolecules and cells that are comparable to the resolutions achievable with solid-phase and cryogenic TEM, respectively. This imaging platform can provide an opportunity for live imaging of biological phenomena that is not yet achieved using any current methods.


Assuntos
Grafite/química , Microscopia Eletrônica/métodos , Razão Sinal-Ruído , Nanopartículas
18.
ACS Omega ; 5(49): 31502-31507, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344801

RESUMO

Chemical vapor deposition has been highlighted as a promising tool for facile graphene growth in a large area. However, grain boundaries impose detrimental effects on the mechanical strength or electrical mobility of graphene. Here, we demonstrate that high-pressure hydrogen treatment in the preannealing step plays a key role in fast and large grain growth and leads to the successful synthesis of large grain graphene in 10 s. Large single grains with a maximum size of ∼160 µm grow by recrystallization of nanograins, but ∼1% areal coverage of nanograins remains with 28-30° misorientation angles. Our findings will provide insights into mass production of high-quality graphene.

19.
Nat Mater ; 19(10): 1124, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32879442

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
ACS Nano ; 14(8): 9637-9643, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806056

RESUMO

We introduce a graphene-based nanofluidic cell that facilitates in situ imaging of liquid samples via transmission electron microscopy. The cell combines the benefits of graphene liquid cells-namely, high resolution, reduced charging effects, and excellent sample stability-with the ability to introduce reactants and control fluid concentrations as provided by conventional silicon-nitride-windowed flow cells. The graphene flow cell offers significantly less window bowing compared to existing commercial holders. We demonstrate the performance of the flow cell by imaging gold nanoparticle dynamics and uranyl acetate crystallization. Our results confirm the utility of graphene flow cells in obtaining the high spatial and temporal resolution required for probing the complex dynamics of nanoparticles and nucleation pathways in aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...